Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Dirac Kondo effect under magnetic catalysis

Hattori, Koichi*; Suenaga, Daiki*; Suzuki, Kei; Yasui, Shigehiro*

Physical Review B, 108(24), p.245110_1 - 245110_11, 2023/12

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

We develop a mean-field theory of a novel Kondo effect emerging in systems without a Fermi surface, which instead emerges under strong magnetic fields. We determine the magnitude of the Kondo condensate, which is a particle pairing composed of conducting Dirac fermions and localized impurities. We focus on the competition between the Kondo effect and the energy gap formation that stems from the pairing among the Dirac fermions leading to the dynamical chiral symmetry breaking. We find that this competition induces a quantum critical point. We also investigate finite-temperature effects. This system at vanishing fermion density can be studied with Monte Carlo lattice simulations, which do not suffer from the sign problem.

Journal Articles

Strong decays of singly heavy baryons from a chiral effective theory of diquarks

Kim, Y.*; Oka, Makoto; Suenaga, Daiki*; Suzuki, Kei

Physical Review D, 107(7), p.074015_1 - 074015_15, 2023/04

 Times Cited Count:1 Percentile:54.75(Astronomy & Astrophysics)

A chiral effective theory of scalar and vector diquarks is formulated, which is based on $$SU(3)_Rtimes SU(3)_L$$ chiral symmetry and includes interactions between scalar and vector diquarks with one or two mesons. We find that the diquark interaction term with two mesons breaks the $$U(1)_A$$ and flavor $$SU(3)$$ symmetries. To determine the coupling constants of the interaction Lagrangians, we investigate one-pion emission decays of singly heavy baryons $$Qqq$$ ($$Q = c$$, $$b$$ and $$q = u$$, $$d$$, $$s$$), where baryons are regarded as diquark-heavy-quark two-body systems. Using this model, we present predictions of the unobserved decay widths of singly heavy baryons. We also study the change of masses and strong decay widths of singly heavy baryons under partial restoration of chiral symmetry.

Journal Articles

Phase diagram of the QCD Kondo effect and inactivation of the magnetic catalysis

Hattori, Koichi*; Suenaga, Daiki*; Suzuki, Kei; Yasui, Shigehiro*

EPJ Web of Conferences, 276, p.01015_1 - 01015_5, 2023/03

 Times Cited Count:0 Percentile:0.91(Physics, Atomic, Molecular & Chemical)

We investigate the QCD phase diagram in strong magnetic fields with heavy-quark impurities and determine the ground state within the mean-field analysis. The ground state is characterized by magnitudes of the pairing not only between the light quark and antiquark, i.e., chiral condensate, but also between the light quark and heavy-quark impurity, dubbed the Kondo condensate. We propose signatures of the interplay and/or competition between those two pairing phenomena reflected in the magnitude of the chiral condensate that is saturated with respect to the magnetic-field strength and anomalously increases with increasing temperature.

Journal Articles

Axial U(1) symmetry at high temperatures in $$N_f=2+1$$ lattice QCD with chiral fermions

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kanamori, Issaku*; Kaneko, Takashi*; Nakamura, Yoshifumi*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.332_1 - 332_7, 2022/07

The axial U(1) anomaly in high-temperature QCD plays an important role to understand the phase diagram of QCD. The previous works by JLQCD Collaboration studied high-temperature QCD using 2-flavor dynamical chiral fermions such as the domain-wall fermion and reweighted overlap fermion. We extend our simulations to QCD with 2+1-flavor dynamical quarks, where the masses of the up, down, and strange quarks are near the physical point, and the temperatures are close to or higher than the pseudocritical temperature. In this talk, we will present the results for the Dirac spectrum, topological susceptibility, axial U(1) susceptibility, and hadronic collelators.

Journal Articles

What is chiral susceptibility probing?

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*; Suzuki, Kei

Proceedings of Science (Internet), 396, p.050_1 - 050_9, 2022/07

In the early days of QCD, the axial $$U(1)$$ anomaly was considered as a trigger for the breaking of the $$SU(2)_Ltimes SU(2)_R$$ symmetry through topological excitations of gluon fields. However, it has been a challenge for lattice QCD to quantify the effect. In this work, we simulate QCD at high temperatures with chiral fermions. The exact chiral symmetry enables us to separate the contribution from the axial $$U(1)$$ breaking from others among the susceptibilities in the scalar and pseudoscalar channels. Our result in two-flavor QCD indicates that the chiral susceptibility, which is conventionally used as a probe for $$SU(2)_Ltimes SU(2)_R$$ breaking, is actually dominated by the axial $$U(1)$$ breaking at temperatures $$Tge 165$$ MeV.

Journal Articles

Doubly heavy tetraquarks in a chiral-diquark picture

Kim, Y.*; Oka, Makoto; Suzuki, Kei

Physical Review D, 105(7), p.074021_1 - 074021_17, 2022/04

 Times Cited Count:15 Percentile:93.15(Astronomy & Astrophysics)

Energy spectrum of doubly heavy tetraquarks, $$T_{QQ}$$ ($$QQ bar{q} bar{q}$$ with $$Q = c, b$$ and $$q = u, d, s$$), is studied in the potential chiral-diquark model. Using the chiral effective theory of diquarks and the quark-diquark-based potential model, the $$T_{bb}$$, $$T_{cc}$$, and $$T_{cb}$$ tetraquarks are described as a three-body system composed of two heavy quarks and an antidiquark. We find several $$T_{bb}$$ bound states, while no $$T_{cc}$$ and $$T_{cb}$$ (deep) bound state is seen. We also study the change of the $$T_{QQ}$$ tetraquark masses under restoration of chiral symmetry.

Journal Articles

Role of the axial $$U(1)$$ anomaly in the chiral susceptibility of QCD at high temperature

Aoki, Shinya*; Aoki, Yasumichi*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*; Suzuki, Kei

Progress of Theoretical and Experimental Physics (Internet), 2022(2), p.023B05_1 - 023B05_12, 2022/02

 Times Cited Count:8 Percentile:81.66(Physics, Multidisciplinary)

The chiral susceptibility, or the first derivative of the chiral condensate with respect to the quark mass, is often used as a probe for the QCD phase transition since the chiral condensate is an order parameter of $$SU(2)_L times SU(2)_R$$ symmetry breaking. However, the chiral condensate also breaks the axial $$U(1)$$ symmetry, which is usually not studied as it is already broken by the anomaly and apparently has little impact on the transition. We investigate the susceptibilities in the scalar and pseudoscalar channels in order to quantify how much the axial $$U(1)$$ breaking contributes to the chiral phase transition. Employing a chirally symmetric lattice Dirac operator and its eigenmode decomposition, we separate the axial $$U(1)$$ breaking effects from others. Our result in two-flavor QCD indicates that both of the connected and disconnected chiral susceptibilities are dominated by axial $$U(1)$$ breaking at temperatures $$Tgeq 190$$ MeV after the quadratically divergent constant is subtracted.

Journal Articles

Kondo effect with Wilson fermions

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suzuki, Kei

Physical Review D, 104(9), p.094515_1 - 094515_11, 2021/11

 Times Cited Count:4 Percentile:37.94(Astronomy & Astrophysics)

We investigate the Kondo effect with Wilson fermions. This is based on a mean-field approach for the chiral Gross-Neveu model including four-point interactions between a light Wilson fermion and a heavy fermion. For massless Wilson fermions, we demonstrate the appearance of the Kondo effect. We point out that there is a coexistence phase with both the light-fermion scalar condensate and Kondo condensate, and the critical chemical potentials of the scalar condensate are shifted by the Kondo effect. For negative-mass Wilson fermions, we find that the Kondo effect is favored near the parameter region realizing the Aoki phase. Our findings will be useful for understanding the roles of heavy impurities in Dirac semimetals, topological insulators, and lattice simulations.

Journal Articles

Heavy baryon spectrum with chiral multiplets of scalar and vector diquarks

Kim, Y.*; Liu, Y.-R.*; Oka, Makoto; Suzuki, Kei

Physical Review D, 104(5), p.054012_1 - 054012_18, 2021/09

 Times Cited Count:12 Percentile:74.69(Astronomy & Astrophysics)

Chiral effective theory of scalar and vector diquarks is formulated according to the linear sigma model. The main application is to describe the ground and excited states of singly heavy baryons with a charm or bottom quark. Applying the potential quark model between the diquark and the heavy quark ($$Q=c, b$$), we construct a heavy-quark-diquark model. The spectra of the positive- and negative-parity states of $$Lambda_Q$$, $$Sigma_Q$$, $$Xi^{(')}_Q$$ and $$Omega_Q$$ are obtained. The masses and interaction parameters of the effective theory are fixed partly from the lattice QCD data and also from fitting low-lying heavy baryon masses. We find that the negative parity excited states of $$Xi_Q$$ (flavor $$bar{bf 3}$$) are different from those of $$Lambda_Q$$, because of the inverse hierarchy of the pseudoscalar diquark. On the other hand, $$Sigma_Q, Xi'_Q$$ and $$Omega_Q$$ (flavor $${bf 6}$$) baryons have similar spectra. We compare our results of the heavy-quark-diquark model with experimental data as well as the quark model.

Journal Articles

Study of the axial $$U(1)$$ anomaly at high temperature with lattice chiral fermions

Aoki, Shinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Kaneko, Takashi*; Rohrhofer, C.*; Suzuki, Kei

Physical Review D, 103(7), p.074506_1 - 074506_18, 2021/04

 Times Cited Count:12 Percentile:72(Astronomy & Astrophysics)

We investigate the axial $$U(1)$$ anomaly of two-flavor QCD at temperatures 190-330 MeV. In order to preserve precise chiral symmetry on the lattice, we employ the M$"o$bius domain-wall fermion action as well as overlap fermion action implemented with a stochastic reweighting technique. Compared to our previous studies, we reduce the lattice spacing to 0.07 fm, simulate larger multiple volumes to estimate finite size effect, and take more than four quark mass points, including one below physical point to investigate the chiral limit. We measure the topological susceptibility, axial $$U(1)$$ susceptibility, and examine the degeneracy of $$U(1)$$ partners in meson/baryon correlators. All the data above the critical temperature indicate that the axial $$U(1)$$ violation is consistent with zero within statistical errors. The quark mass dependence suggests disappearance of the $$U(1)$$ anomaly at a rate comparable to that of the $$SU(2)_L times SU(2)_R$$ symmetry breaking.

Journal Articles

Axial U(1) symmetry and mesonic correlators at high temperature in $$N_f=2$$ lattice QCD

Suzuki, Kei; Aoki, Shinya*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Hashimoto, Shoji*; Rohrhofer, C.*

Proceedings of Science (Internet), 363, p.178_1 - 178_7, 2020/08

We investigate the high-temperature phase of QCD using lattice QCD simulations with $$N_f=2$$ dynamical M$"o$bius domain-wall fermions. On generated configurations, we study the axial $$U(1)$$ symmetry, overlap-Dirac spectra, screening masses from mesonic correlators, and topological susceptibility. We find that some of the observables are quite sensitive to lattice artifacts due to a small violation of the chiral symmetry. For those observables, we reweight the M$"o$bius domain-wall fermion determinant by that of the overlap fermion. We also check the volume dependence of observables. Our data near the chiral limit indicates a strong suppression of the axial $$U(1)$$ anomaly at temperatures $$geq$$ 220 MeV.

Journal Articles

Symmetries of the light hadron spectrum in high temperature QCD

Rohrhofer, C.*; Aoki, Yasumichi*; Cossu, G.*; Fukaya, Hidenori*; Gattringer, C.*; Glozman, L. Ya.*; Hashimoto, Shoji*; Lang, C. B.*; Suzuki, Kei

Proceedings of Science (Internet), 363, p.227_1 - 227_7, 2020/08

Properties of QCD matter change significantly around the chiral crossover temperature, and the effects on $$U(1)_A$$ and topological susceptibilities, as well as the meson spectrum have been studied with much care. Baryons and the effect of parity doubling in this temperature range have been analyzed previously by various other groups employing different setups. Here we construct suitable operators to investigate chiral and axial $$U(1)_A$$ symmetries in the baryon spectrum. Measurements for different volumes and quark-masses are done with two flavors of chirally symmetric domain-wall fermions at temperatures above the critical one. The possibility of emergent $$SU(4)$$ and $$SU(2)_{CS}$$ symmetries is discussed.

Journal Articles

Spectrum of singly heavy baryons from a chiral effective theory of diquarks

Kim, Y.*; Hiyama, Emiko*; Oka, Makoto; Suzuki, Kei

Physical Review D, 102(1), p.014004_1 - 014004_9, 2020/07

AA2019-0768.pdf:0.47MB

 Times Cited Count:17 Percentile:76.24(Astronomy & Astrophysics)

Applying the chiral effective theory of diquarks, we analyze the spectrum and structure of singly heavy baryons. We introduce the phenomenological quark-model potentials for the confinement. We predict the charmed and bottom baryon spectrum showing the inverse mass hierarchy.

Journal Articles

Chiral effective theory of diquarks and the $$U_A(1)$$ anomaly

Harada, Masayasu*; Liu, Y.-R.*; Oka, Makoto; Suzuki, Kei

Physical Review D, 101(5), p.054038_1 - 054038_11, 2020/03

 Times Cited Count:16 Percentile:74.34(Astronomy & Astrophysics)

Using a chiral effective theory of diquarks, we analyze the spectrum and structure of diquark and heavy baryons consisting of diquarks. $$U_A(1)$$ anomaly is considered in the chiral Lagrangian and its effects are studied.

Journal Articles

$$D$$ mesons as a probe of Casimir effect for chiral symmetry breaking

Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suenaga, Daiki*; Suzuki, Kei

Physical Review D, 100(3), p.034016_1 - 034016_14, 2019/08

 Times Cited Count:5 Percentile:31.16(Astronomy & Astrophysics)

We propose $$D$$ mesons as probes to investigate finite-volume effects for chiral symmetry breaking at zero and finite temperatures. By using the 2+1-flavor linear sigma model with constituent light quarks, we analyze the Casimir effects for the $$sigma$$ mean fields; the chiral symmetry is rapidly restored by the antiperiodic boundary for light quarks, and the chiral symmetry breaking is catalyzed by the periodic boundary. We also show the phase diagram of the $$sigma$$ mean fields on the volume and temperature plane. For $$D$$ mesons, we employ an effective model based on the chiral-partner structure, in which the volume dependence of $$D$$ mesons is induced by the $$sigma$$ mean fields. We find that $$D_s$$ mesons are less sensitive to finite volume than $$D$$ mesons, which is caused by the insensitivity of $$sigma_s$$ mean fields. An anomalous mass shift of $$D$$ mesons at high temperature with the periodic boundary will be useful in examinations with lattice QCD simulations. The dependence on the number of compactified spatial dimensions is also studied.

Journal Articles

$$phi$$ meson production in the forward/backward rapidity region in Cu + Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Hasegawa, Shoichi; Imai, Kenichi; Nagamiya, Shoji; Sako, Hiroyuki; Sato, Susumu; Tanida, Kiyoshi; PHENIX Collaboration*; 505 of others*

Physical Review C, 93(2), p.024904_1 - 024904_13, 2016/02

AA2015-1019.pdf:0.98MB

 Times Cited Count:10 Percentile:60.43(Physics, Nuclear)

Journal Articles

Dielectron production in Au + Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Hasegawa, Shoichi; Imai, Kenichi; Nagamiya, Shoji; Sako, Hiroyuki; Sato, Susumu; Tanida, Kiyoshi; PHENIX Collaboration*; 440 of others*

Physical Review C, 93(1), p.014904_1 - 014904_34, 2016/01

AA2015-0856.pdf:3.7MB

 Times Cited Count:48 Percentile:95(Physics, Nuclear)

Oral presentation

Casimir effect and spontaneous chiral symmetry braking in D mesons

Suzuki, Kei; Ishikawa, Tsutomu*; Nakayama, Katsumasa*; Suenaga, Daiki*

no journal, , 

D mesons are expected to be clear probes of the chiral condensate. For the Casimir effect in the QCD vacuum, non-perturbative properties of the QCD vacuum are modified by the volume size and boundary conditions. In this talk, we focus on the modification of the chiral symmetry breaking by the Casimir effect and the response of D mesons. By using an effective Lagrangian based on chiral partner structures for D mesons, we discuss the dependences on volume, boundary, and temperature, and the applications to lattice QCD simulations.

Oral presentation

Axial U(1) symmetry in high temperature phase of two-flavor QCD

Suzuki, Kei

no journal, , 

In this talk, using lattice QCD simulations with $$N_f=2$$ dynamical fermions by JLQCD Collaboration, I will show our recent results of the observables in the high-temperature phase in which the chiral symmetry is restored, such as the axial $$U(1)$$ symmetry, topological charge, Dirac eigenvalue spectra, meson correlators, and screening masses. Our gauge ensembles are generated with Moebius domain-wall fermions, but the measurements such as susceptibilities are reweighted to those for the overlap fermions by using overlap/domain-wall reweighting technique. We find that the $$U(1)_A$$ and topological susceptibilities are strongly suppressed in the small quark mass region. We will also discuss the relation between the susceptibilities and meson correlators.

Oral presentation

Chiral effective theory of diquarks and $$U_A(1)$$ anomaly

Oka, Makoto; Harada, Masayasu*; Suzuki, Kei; Liu, Y.-R.*

no journal, , 

Using a chiral effective theory of diquarks, we analyze the spectrum and structure of diquark and heavy baryons consisting of diquarks. UA(1) anomaly is considered in the chiral Lagrangian and its effects are studied.

31 (Records 1-20 displayed on this page)